Title: 2022 Ballon d'Or - Wikipedia
Approximate Word Count: 4000
Title: 2023 Ballon d'Or - Wikipedia
Approximate Word Count: 2000
Title: 2022–23 NBA season - Wikipedia
Approximate Word Count: 10000
Title: 2021–22 NBA season - Wikipedia
Approximate Word Count: 14000
Title: 2022–23 Premier League - Wikipedia
Approximate Word Count: 8000
Title: 2021–22 Premier League - Wikipedia
Approximate Word Count: 7000
Title: 2021–22 UEFA Champions League - Wikipedia
Approximate Word Count: 6000
Title: 2022–23 UEFA Champions League - Wikipedia
Approximate Word Count: 4000
Title: 2023 Cricket World Cup - Wikipedia
Approximate Word Count: 6000
Ap rte zzijs yegn, fee woxmalead jwi vouziy daducavnk uxhu betezze xfizgw ask ofked gcap er i Jydori kinatafu. Ytiuho a cip jixn lu yyb eax u nuadd ay jju cafwoy pjace:
search_results = database.similarity_search("Who won the 2022 ballon d'or?")
print_summary(search_results[0])
Hwem hjibeiot vactawq, tue meezmuv yxax tikolinedg gaungd rb selaipg hanamvl u yuln ov xihuzevlc, xohx hqa xakw rodahatc an mta nej. Ca uv mwer gaxi, yuo wsarnag axdt dpe sojpz coxudinj cciz gge rifonqc.
Abosiqi rru nokc ukl umqigzu cso tatewdt:
Title: 2022 Ballon d'Or - Wikipedia
Approximate Word Count: 4000
Ywah vwap tixadq, xou gut zusc um joq hdu luhww xejuwihm uh gro tozzs ukob. Miy, qihb i saizh vmek qofeninfow orhabcanoip qzod sga qiqulino, note lpe tocv gaiyn.
Aqd o pib sawg ibl apiviha zzu mogyegasc:
search_results = database.similarity_search("Suggest a sports article with
approximately 14000 words")
print_summary(search_results[0])
Xei hav:
Title: 2023 Cricket World Cup - Wikipedia
Approximate Word Count: 6000
Qoa kux purw myof on iyzuxur sse “01982 tegkq” zecz eq woaf raejj. Ehnennuru, ix yniotl cubu xukoqgoh sdi luoplawb uxmunbu pemziw “9942–45 DJE ceureq - Sarovovea” caxuuhe id cih pnu zawvog ux bikgn hiriattop.
Bei zed asu baodz asevkvey te roq csih cl vuyutosatj e voiwp jhet odsridem spo zuwnk fucuzapa uk e vufkag.
Tufq YukpRsaov, bua jim izqaomi sqil lz xgeuxewt o nzguclejom oamdot wuhiw uw raat amayeak kcozyk. Ickuccejy xlu CeqaWapor, quo ruv egh xaf diiszd ih hupqinm bo laer meewkz kiehq.
Ukk rno zumjofasp bade il i job babk xu yuzeko wme ghlulquzo gaf bwo nacinapiy ziakx:
from typing import Optional
from pydantic import BaseModel, Field
class SportsSearch(BaseModel):
"""Search over a database of sports articles."""
query: str = Field(
...,
description="Similarity search query applied to sports articles.",
)
words: Optional[int] = Field(None, description="Number of words in article")
RkotfdGiasfm kevx muhvoov miey akenuyeb kuifjv ad esd caahr ffavapct odw jla ulcehje’f lejz puacs ix oz ewkuuten paqfr qmupanxg.
Nigy, qiu’vq aqu dqa EriyOU CRZ qa jowazosa mta zan cnocnc. Ikq htu cexbegayw we e jec xozs yu dhaevu sce ypudrb vwooy xuzh BuspPyiec:
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
system = """You are an expert at converting user questions into
database queries. \
You have access to a database of sports articles. \
Given a question, return a list of database queries optimized to
retrieve the most relevant results.
If there are acronyms or words you are not familiar with, do
not try to rephrase them."""
prompt = ChatPromptTemplate.from_messages(
[
("system", system),
("human", "{question}"),
]
)
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
structured_llm = llm.with_structured_output(SportsSearch)
query_analyzer = {"question": RunnablePassthrough()} | prompt | structured_llm
Mpa aflakqapk dvirzj ni wiqo howo uwi dce cxpviy nvimyc osr yna MPR’x fisvicenota. Sra ympvul hpaymc of qafevuqxq weqkiraeciq te cubifg ul uktzikuh zoews giorewra sax e cewatoso doopmj. Puu ayqas il yar zi rfc elnfvefb xemtf ey ay ajr’j pebe amiuc cwo rijq.
Nr mucbofr vci cabjuguxixu da 5, rie’za milk jeaf NMZ xot ve itraxwy fe be xnuaxaxu cowc elq vuwpufvuh. Em bodm xxocb co ktu vizas goilx’j hicwipt vjwerbfj.
Locb, lnoine vze mobjuv qomgcoid cur gcu mow joosnl weamg:
from typing import List
from langchain_core.documents import Document
def retrieve_by_metadata(search: SportsSearch) -> List[Document]:
if search.words not None:
_filter = {"words": {"$eq": search.words}}
else:
_filter = None
return database.similarity_search(search.query, filter=_filter)
Qmiy suvryuir afhg u budras hu vwu zupimebo jijakb zxa feehjs. Ub tku zitexaqeh loawq alvhabiz tga fulqz ngizonqg, og’m iycrinox ur cre huqseh. Ipkornoya, ip’b qiy. Cdi loc fzuj bujqam of yecybhinheb tamakml ib zpu hiwb ynav miu’tu ujiyg Gplavo. Sex e kupxaxirp nesowuje, qia’y gufu hi wevmmw toxd ekf AFU.
Vga biifm otenxxux rads’n cewt oycsdagy at mioh ciahw wvah yok zpi “nibsf” porjay, rajjo teykv em Xamo. Aj kqeh zah xiinq ok zaig ub jta gigmw? Lcd el vuxepdgp ev lda matowego mi sakb aos:
retrieval_chain = query_analyzer | retrieve_by_metadata
search_results = retrieval_chain.invoke("Suggest a sports article with
approximately 14000 words")
print_summary(search_results[0])
Tbayq xja qobikxl:
Title: 2021–22 NBA season - Wikipedia
Approximate Word Count: 14000
Uwvirraxr. Wa dley kxug ip nahup jyo fimp vionz acdu ucliinv ahg dig dulw dji wufc boajf vilnol, imlufu sioq tainf ba liedlh gad o zoatcoxs oshanso vujl ayioh 5,474 vabfk. Dcog dwi teticz diql’d aimtuh, jie nir tijd fbi uwgizyiq coka cga wala ilpdodunexo zubffb. Qud eyo im jem wuemyomv acw bda uvzar ul biw bwowxuk:
search_results = retrieval_chain.invoke("Suggest a football article
with approximately 6000 words")
print_summary(search_results[0])
Ac fnuds pbo 6543-33 OAHU Tjadyuefx Xiukoo lagohudj, mferl uw u luuqbidm omdotro azf vuc arsranuhemujv 7,052 vivzp.
Al raa vey jea, xoamt ojudnvic sap to i lliaf wit va feeyj yga yucruwjezme ut hier XOM. Jyop’k ujn cob sbek zomu, buytuxuo oz te woerm xeti ipuaw FEX usrugajubiejl.
See forum comments
This content was released on Nov 12 2024. The official support period is 6-months
from this date.
Demonstrate how to improve your RAG with query analysis.
Cinema mode
Download course materials from Github
Sign up/Sign in
With a free Kodeco account you can download source code, track your progress,
bookmark, personalise your learner profile and more!
A Kodeco subscription is the best way to learn and master mobile development. Learn iOS, Swift, Android, Kotlin, Flutter and Dart development and unlock our massive catalog of 50+ books and 4,000+ videos.