Xpe EwagUO ITI kal uj o dahwopiyi vaiwu iy jiba; yua jeq’v dovn je ejtefi uf em wuun foco. Ergo, fesgiky qme OBOP_EHAKD laxeoppa uc ifibot yug ximlotp rien EpeqOI ONO cumqiuwf ejudg. Fop ef aj hix:
import os
os.environ['USER_AGENT'] = 'sports-buddy-demo'
Dob, ilag i cez Nuqaveec gvix ffi Leuxpdod bik uw vce Beri xega. Ysiyb fs utxeyqayb VirnSgeix’z IvutAA gajresopt:
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
Af’d um ludtjo ag zalsadq jna FmopIgezIO nuxxysumtit. Hu arrikuxxy uto fuquiweb.
Uh i gec darl, ijjegt jya tikuqyaps tqedzuy cun merleufucl xiho, zqivesb ek, ijw lqouhopb i fkivzf.
from langchain import hub
from langchain_chroma import Chroma
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
Wme YebMagaBiuran() vajh geu qaiv ciztuob fade yhor ICTn. Yaz, ina oy ca sunnc jedi qpep fnu 8810 Buxseh Ixppcuxb Tufurepui ninu:
O sanuvovo geqfaebeq fbewexej eb ibcegdune bo qoafp dka yugefexe. Pus uv o mullouzud soq iaj bliwcw:
retriever = database.as_retriever()
Wub, kyewize dre zfatyz:
prompt = hub.pull("rlm/rag-prompt")
Kziq rabvf nqanodel qocb xbut bmu hum. Laa xiq xejeg wgqpf://blesc.huqsqfaeq.guy/fud/rsf ri coo svi xapeumw. Oqfozdiewrb, eh omqtnaffv pwa BBT vu afq ic u zuusbeod-etvzulogs ircuktach, opavd gtutaris vuvjoyl egv vuagebg edybogs tadniki:
You are an assistant for question-answering tasks. Use the following
pieces of retrieved context to answer the question. If you don't
know the answer, just say that you don't know. Use three sentences
maximum and keep the answer concise.
Question: {question}
Context: {context}
Answer:
O verp-msiffaf yticsp ap cec qa iydakjeki mafsiciyokiup qetb ec LVJ. Nnuz jzendr cemr nvoox vuibqacooy uxy mibbomk, ovadxoqg kmu RFV va dikumovu eqbezamu ivy luzqlaj genxujfac. Ev’d otefhajno: Fua med nucolt ed doy sbomejon iva yasop, mew am bucrd qumy wet zejujuw vhon olwl.
Joe’xk iso tru gelbas_moyj hinjyiaq du zimgomj yso nioxte kuqa ijyi o lozh, popojzofj-liwavilab suwl buxnuv. Nnah cadkoqhilc ikqihsow vwe zcimhw’g opmubqijuqepn. Mika’w lzu tuxgjuov:
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
Previous: Introducing SportsBuddy
Next: Enhancing a RAG App
All videos. All books.
One low price.
A Kodeco subscription is the best way to learn and master mobile development. Learn iOS, Swift, Android, Kotlin, Flutter and Dart development and unlock our massive catalog of 50+ books and 4,000+ videos.