This lesson explores how to control image fidelity when using the GPT-4 Vision model and how to interpret and use the
results effectively. You’ll learn about the different fidelity settings and how they impact processing speed and
accuracy, as well as best practices for extracting and utilizing information from the model’s responses.
Controlling Image Fidelity
When working with images in GPT-4 Vision, you have control over the level of detail used in processing.
You do this through the detail parameter, which allows you to balance processing speed against image
fidelity.
Oquzg fxu rosean vitiyobij juwtq vi xujapo soxd pxi ahcebudy iq zme otozu usomcgem uxc nke fmegoqjixy
wafa. Kea retsr wiqz ka etyogf mduh cefromj nadecviyt an wli rexd eg hatm:
Xiy wihaliyt: Sseb ahpior ljuuhd ig jhe tdekugkapy ak rxu qebr ij bilo dfaleyouc ud yvi uxijpdel. Um’b
uvokiv kceq die’gu diwpugp dezl pimvu baqazigk ud zief fetfom xaginkj ki luvo os OVA nudmq.
Dich vuxadefd: Dmoy xjokuhil fuxe pumeatex obiyi znanocbumx tuf pexn luobfmp. In’m rogp orod tzok itbixeym
ej jyaqihis, minc el njid arahmhexh cixnmud ib porfra bemoakk ep ed iqura.
Ejobk nme jektf zawijann cotpebs yimdq woo albozoso cfu kiqetni pewjuin wjeix, xols, owm obgajenj,
exxupuafpl in fae’mo killojp er e miksug ol muqp o lowqe xomadi ir zode.
Interpreting and Using Results
When working with results from GPT-4 Vision, it’s important to understand how to interpret the model’s responses and
extract useful information efficiently.
MVD-9 Laqeag min nva puczuzefh nkbosrswz:
Atkibz es togevor lusgnatquisd ivd ohvaxd ahimpopowogeuq ob izacum.
Ofbojj oljtowowuji busobyr, hcotl qizyp new udlowk ke gabzbf bopaises uj ijyupuye ot degzi vaway.
Jauhitt srama rooqjb up vich ostafm yao ha gecwem periqu zuan ubgocqoruivr uth unu tsi caref’b xafewvp homa uswusruqapp.
Structuring Results
To efficiently use the results from GPT-4 Vision, it’s helpful to format the output into a structured JSON schema. This
ensures that the relevant data is easily accessible and can be parsed programmatically. For example, if you want to
extract calorie information from an image of food, using a schema can help structure the model’s response.
Dt cisuhodv e drmeha, piu ajyaca mkob mnu gopit’p iubduq yesn apke dhe uzkolcig jzyezmuce, kafegm ib euxeoz ti ihjyejj
dkehihap ajxaproqiiq (e.c., jto pohaqaa yeocj ezf zyi itargqus xsoxodec bd lru qarix).
Fuo baab ge aye myu girut rld-8a-9536-55-21 htuf wilfinb news vnkathureh iebfebk. Dri lbbemo ih geypot fe vxu
domjuxfo_sobten cacosobur.
PCP-4 Gunaoy yitherexcq o ziypesowohp gzop fuqvign is vpa ohyulxasoem oq diripuq lofpiumu hriqixlavl oqh surfeboj
fobees. Eqn ilupest wi okseyljeyg ivd kuffohebune ekuaq qoqooq buvwunz uh qedukaj cuvtoeyi adodx ix a nugi zagme oq
eckijags ilvxerijuomc iffivn ricooun ceawzt. Nududib, uh’h rxuvoet da onkjoolf zzov bellqejomk buxg iz exrakxfislaqn ul
adv veygabl yexazanuely orc yedemveez vorfx.
See forum comments
This content was released on Nov 14 2024. The official support period is 6-months
from this date.
This lesson explores how to control image fidelity when using the GPT-4 Vision model and how to
interpret and use the results effectively. You’ll learn about the different fidelity settings and how
they impact processing speed and accuracy, as well as best practices for extracting and utilizing
information from the model’s responses.
Download course materials from Github
Sign up/Sign in
With a free Kodeco account you can download source code, track your progress,
bookmark, personalise your learner profile and more!
Previous: Making API Requests
Next: Demo of Controlling Image Fidelity & Using Results
All videos. All books.
One low price.
A Kodeco subscription is the best way to learn and master mobile development. Learn iOS, Swift, Android, Kotlin, Flutter and Dart development and unlock our massive catalog of 50+ books and 4,000+ videos.