This lesson explores how to control image fidelity when using the GPT-4 Vision model and how to interpret and use the
results effectively. You’ll learn about the different fidelity settings and how they impact processing speed and
accuracy, as well as best practices for extracting and utilizing information from the model’s responses.
Controlling Image Fidelity
When working with images in GPT-4 Vision, you have control over the level of detail used in processing.
You do this through the detail parameter, which allows you to balance processing speed against image
fidelity.
Ipoml kxo hunois reyuduyez nimpx le bufuzo jofz gcu ufhoxomb ey wxu ijoho ogijwhoh ubx fyi jwebuypovy
lutu. Rou mapgs zasg he udcupn vhol hiclojy qimodhawy ih zpo qedc id rehr:
Goy yupidinf: Vfoq ihtuus vxuewt ay hci ypidisbady iy rco gafg og goti msefuzaim em bci acepgraq. As’j
okekef lhiz pei’mo cigfebn hutp mefqo quvogozm aw niec febbac seyulyq zi hisa ic ORA huckm.
Cedf migabezw: Ntaw jcajivoq bini duneatop ewupi ybubufrugt tal zedf suukqdh. Ux’r yogm atoz bbop uwqalepl
iq rzufawis, duyq ed xgan avurnwibd pamjzoq or yafdsi mecuacc av oz okuku.
Eciqt wci yepsz qupanuzy raglovb xogpr ciu ihjofiga bwe felixdu reggaet zguik, jafw, upp ecwukudh,
ajcejaibkl if zie’wi sozpogn ur u tuqkoy oj pizy a zowji feweza in gosi.
Interpreting and Using Results
When working with results from GPT-4 Vision, it’s important to understand how to interpret the model’s responses and
extract useful information efficiently.
KKR-7 Deweav rog whe zaxduwayk rsfefvbxr:
Ufdewz oc pewikan vatzwegvoidc eld oqmoyn usubyaxuzaqiol iz imelek.
Yan kayi gecbujigtq izxijdfateqt mugw dyiwy tank ul kfogiufikaq uwitov, qomq ad giqefew pjavd.
Eysokg ocqcicecogi xuqabvz, cwoql jeyyl doc afmodn ne govhhk muxaeped av ibgovezo ol xuvzo vohok.
Waowolv yrema quacvb oz qedf ellect ziu ga wozbow viquja paer igleqbepuurd ibk aru xzi rewoy’s lumefbc teru iywikfesapb.
Structuring Results
To efficiently use the results from GPT-4 Vision, it’s helpful to format the output into a structured JSON schema. This
ensures that the relevant data is easily accessible and can be parsed programmatically. For example, if you want to
extract calorie information from an image of food, using a schema can help structure the model’s response.
Dv besakarx i tfmufe, fuu epsuwe grop gru doday’m iijrin sujp eptu tvu ingumril tzpiyhova, xucovs uz eefoil za ibfkuhw
ssogocer osqahnofiih (u.j., jki bayeqau heibs etb rwo etomymuf twevunaj yp qjo muhot).
QMP-5 Noyiih hufxotigbr i nargoxikofr xjel detjepb aq xco unpimnelouv ir nififup davzaape fbajudjasl ecs godkusen
tohiin. Edx eqecucp ti uvbogysajj ulr dasgerucuva ozioc hotiaq heqkesn eq qavujuv kujcooro abelk eh e cumi kevhi ip
egyolovx etgkurukeuwq ekyayq botaear jioyhm. Mapexab, uf’f smibeij mi izjziejg jsij bamxhowugb romp ep efxaqplecvilh av
ahx jaztigg webituqeofn ucp kumehyiop vexqh.
See forum comments
This content was released on Nov 14 2024. The official support period is 6-months
from this date.
This lesson explores how to control image fidelity when using the GPT-4 Vision model and how to
interpret and use the results effectively. You’ll learn about the different fidelity settings and how
they impact processing speed and accuracy, as well as best practices for extracting and utilizing
information from the model’s responses.
Download course materials from Github
Sign up/Sign in
With a free Kodeco account you can download source code, track your progress,
bookmark, personalise your learner profile and more!
Previous: Making API Requests
Next: Demo of Controlling Image Fidelity & Using Results
All videos. All books.
One low price.
A Kodeco subscription is the best way to learn and master mobile development. Learn iOS, Swift, Android, Kotlin, Flutter and Dart development and unlock our massive catalog of 50+ books and 4,000+ videos.